updated: 11/23/00

Hayashi *Econometrics*: Answers to Selected Review Questions

Chapter 8

Section 8.1

1(a) Deriving the score should be easy. Differentiating the score with respect to θ and rearranging, you should obtain

$$-\frac{y_t - 2y_t F_t + F_t^2}{[F_t \cdot (1 - F_t)]^2} f_t^2 \mathbf{x}_t \mathbf{x}_t' + \left[\frac{y_t - F_t}{F_t \cdot (1 - F_t)}\right] f_t' \mathbf{x}_t \mathbf{x}_t'$$

Since y_t is either 0 or 1, we have $y_t = y_t^2$. So $y_t - 2y_tF_t + F_t^2$, which is the numerator in the first term, equals $y_t^2 - 2y_tF_t + F_t^2 = (y_t - F_t)^2$.

Section 8.3

- 2. Since $\lambda(-v) + v \ge 0$ for all -v, the coefficients of the two matrices in (8.3.12) are nonpositive. So the claim is proved if the two matrices are both positive semi-definite. The hint makes clear that they are.
- 3. Yes, because even if the data are not i.i.d., the conditional ML estimator is still an M-estimator.

Section 8.5

2. Since $|\mathbf{\Gamma}_0| \neq 0$, the reduced form (8.5.9) exists. Since x_{tK} does not appear in any of the structural-form equations, the last column of \mathbf{B}_0 is a zero vector, and so for any m the m-th reduced form is that y_{tm} is a linear function of $x_{t1}, \ldots, x_{t,K-1}$ and v_{tm} . Since x_{tK} is predetermined, it is orthogonal to any element of the reduced-form disturvance vector \mathbf{v}_t . Therefore, in the least square projection of y_{tm} on \mathbf{x}_t , the coefficient of x_{tK} is zero.