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Solution to Chapter 9 Analytical Exercises

1. From the hint, we have

1
T

T∑
t=1

∆ξt · ξt−1 =
1
2

(
ξT√
T

)2

− 1
2

(
ξ0√
T

)2

− 1
2T

T∑
t=1

(∆ξt)2. (∗)

Consider the second term on the RHS of (∗). Since E(ξ0/
√
T ) → 0 and Var(ξ0/

√
T ) → 0,

ξ0/
√
T converges in mean square (by Chevychev’s LLN), and hence in probability, to 0. So the

second term vanishes (converges in probability to zero) (this can actually be shown directly
from the definition of convergence in probability). Next, consider the expression ξT /

√
T in the

first term on the RHS of (∗). It can be written as

ξT√
T

=
1√
T

(ξ0 + ∆ξ1 + · · ·+ ∆ξT ) =
ξ0√
T

+
√
T

1
T

T∑
t=1

∆ξt.

As just seen, ξ0√
T

vanishes. Since ∆ξt is I(0) satisfying (9.2.1)-(9.2.3), the hypothesis of Proposi-
tion 6.9 is satisfied (in particular, the absolute summability in the hypothesis of the Proposition
is satisfied because it is implied by the one-summability (9.2.3a)). So

√
T

1
T

T∑
t=1

∆ξt →
d
λX, X ∼ N(0, 1).

where λ2 is the long-run variance of ∆ξt. Regarding the third term on the RHS of (∗), since
∆ξt is ergodic stationary, 1

2T

∑T
t=1(∆ξt)

2 converges in probability to 1
2γ0. Finally, by Lemma

2.4(a) we conclude that the RHS of (∗) converges in distribution to λ2

2 X
2 − 1

2γ0.

2. (a) The hint is the answer.
(b) From (a),

T · (ρ̂µ − 1) =
1
T

∑T
t=1 ∆yt y

µ
t−1

1
T 2

∑T
t=1(y

µ
t−1)2

.

Apply Proposition 9.2(d) to the numerator and Proposition 9.2(c) to the denominator.
(c) Since {yt} is random walk, λ2 = γ0. Just set λ2 = γ0 in (4) of the question.
(d) • First, a proof that α̂∗ →p 0. By the algebra of OLS,

α̂∗ =
1
T

T∑
t=1

(yt − ρ̂µyt−1)

=
1
T

T∑
t=1

(∆yt − (ρ̂µ − 1)yt−1)

=
1
T

T∑
t=1

∆yt − (ρ̂µ − 1)
1
T

T∑
t=1

yt−1

=
1
T

T∑
t=1

∆yt −
1√
T

(
T · (ρ̂µ − 1)

)( 1√
T

1
T

T∑
t=1

yt−1

)
.
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The first term after the last equality, 1
T

∑T
t=1 ∆yt, vanishes (converges to zero in proba-

bility) because ∆yt is ergodic stationary and E(∆yt) = 0. To show that the second term
after the last equality vanishes, we first note that 1√

T

(
T · (ρ̂µ − 1)

)
vanishes because

T · (ρ̂µ − 1) converges to a random variable by (b). By (6) in the hint, 1√
T

1
T

∑T
t=1 yt−1

converges to a random variable. Therefore, by Lemma 2.4(b), the whole second term
vanishes.

• Now turn to s2. From the hint,

s2 =
1

T − 1

T∑
t=1

(∆yt − α̂∗)2 − 2
T − 1

· [T · (ρ̂µ − 1)] · 1
T

T∑
t=1

(∆yt − α̂∗) · yt−1

+
1

T − 1
· [T · (ρ̂µ − 1)]2 · 1

T 2

T∑
t=1

(yt−1)2. (∗)

Since α̂∗ →p 0, it should be easy to show that the first term on the RHS of (∗) converges
to γ0 in probability. Regarding the second term, rewrite it as

2
T − 1

· [T · (ρ̂µ− 1)] · 1
T

T∑
t=1

∆yt yt−1−
2
√
T

T − 1
· [T · (ρ̂µ− 1)] · α̂∗ · 1√

T

1
T

T∑
t=1

yt−1. (∗∗)

By Proposition 9.2(b), 1
T

∑T
t=1 ∆yt yt−1 converges to a random variable. So does T ·

(ρ̂µ−1). Hence the first term of (∗∗) vanishes. Turning to the second term of (∗∗), (6)
in the question means 1√

T
1
T

∑T
t=1 yt−1 converges to a random variable. It should now

be routine to show that the whole second term of (∗∗) vanishes. A similar argument,
this time utilizing Proposition 9.2(a), shows that the third term of (∗) vanishes.

(e) By (7) in the hint and (3), a little algebra yields

tµ =
ρ̂µ − 1

s · 1√∑T
t=1(y

µ
t−1)

2

=
1
T

∑T
t=1 ∆yt y

µ
t−1

s ·
√

1
T 2

∑T
t=1(y

µ
t−1)2

.

Use Proposition 9.2(c) and (d) with λ2 = γ0 = σ2 and the fact that s is consistent for σ
to complete the proof.

3. (a) The hint is the answer.

(b) From (a), we have

T · (ρ̂τ − 1) =
1
T

∑T
t=1 ∆yt yτt−1

1
T 2

∑T
t=1(y

τ
t−1)2

.

Let ξt and ξτt be as defined in the hint. Then ∆yt = δ+∆ξt and yτt = ξτt . By construction,∑T
t=1 y

τ
t−1 = 0. So

T · (ρ̂τ − 1) =
1
T

∑T
t=1 ∆ξt ξτt−1

1
T 2

∑T
t=1(ξ

τ
t−1)2

.

Since {ξt} is driftless I(1), Proposition 9.2(e) and (f) can be used here.

(c) Just observe that λ2 = γ0 if {yt} is a random walk with or without drift.
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4. From the hint,

1
T

T∑
t=1

yt−1 εt = ψ(1)
1
T

T∑
t=1

wt−1 εt +
1
T

T∑
t=1

ηt−1 εt + (y0 − η0)
1
T

T∑
t=1

εt. (∗)

Consider first the second term on the RHS of (∗). Since ηt−1, which is a function of (εt−1, εt−2, . . . ),
is independent of εt, we have: E(ηt−1εt) = E(ηt−1) E(εt) = 0. Then by the ergodic theorem
this second term vanishes. Regarding the third term of (∗), 1

T

∑T
t=1 εt →p 0. So the whole third

term vanishes. Lastly, consider the first term on the RHS of (∗). Since {wt} is random walk and
εt = ∆wt, Proposition 9.2(b) with λ2 = γ0 = σ2 implies 1

T

∑T
t=1 wt−1 εt →d

(
σ2

2

)
[W (1)2− 1].

5. Comparing Proposition 9.6 and 9.7, the null is the same (that {∆yt} is zero-mean stationary
AR(p), φ(L)∆yt = εt, whose MA representation is ∆yt = ψ(L)εt with ψ(L) ≡ φ(L)−1) but
the augmented autoregression in Proposition 9.7 has an intercept. The proof of Proposition
9.7 (for p = 1) makes appropriate changes on the argument developed on pp. 587-590. Let b
and β be as defined in the hint. The AT and cT for the present case is

AT =

[
1
T 2

∑T
t=1(y

µ
t−1)

2 1√
T

1
T

∑T
t=1 y

µ
t−1 (∆yt−1)(µ)

1√
T

1
T

∑T
t=1(∆yt−1)(µ) yµt−1

1
T

∑T
t=1[(∆yt−1)(µ)]2

]
,

cT =

[
1
T

∑T
t=1 y

µ
t−1 ε

µ
t

1√
T

∑T
t=1(∆yt−1)(µ) εµt

]
=

[
1
T

∑T
t=1 y

µ
t−1 εt

1√
T

∑T
t=1(∆yt−1)(µ) εt

]
,

where εµt is the residual from the regression of εt on a constant for t = 1, 2, ..., T .

• (1,1) element of AT : Since {yt} is driftless I(1) under the null, Proposition 9.2(c) can
be used to claim that 1

T 2

∑T
t=1(y

µ
t−1)

2 →d λ2
∫

(Wµ)2, where λ2 = σ2[ψ(1)]2 with σ2 ≡
Var(εt).

• (2,2) element of AT : Since (∆yt−1)(µ) = ∆yt−1 − 1
T

∑T
t=1 ∆yt−1, this element can be

written as
1
T

T∑
t=1

[(∆yt−1)(µ)]2 =
1
T

T∑
t=1

(∆yt−1)2 −

(
1
T

T∑
t=1

∆yt−1

)2

.

Since E(∆yt−1) = 0 and E[(∆yt−1)2] = γ0 (the variance of ∆yt), this expression converges
in probability to γ0.

• Off diagonal elements of AT : it equals

1√
T

1
T

T∑
t=1

(∆yt−1)(µ) yµt−1 =
1√
T

[
1
T

T∑
t=1

(∆yt−1) yt−1

]
−

(
1√
T

1
T

T∑
t=1

yt−1

)(
1
T

T∑
t=1

∆yt−1

)
.

The term in the square bracket is (9.4.14), which is shown to converge to a random variable
(Review Question 3 of Section 9.4). The next term, 1√

T
1
T

∑T
t=1 yt−1, converges to a ran-

dom variable by (6) assumed in Analytical Exercise 2(d). The last term, 1
T

∑T
t=1 ∆yt−1,

converges to zero in probability. Therefore, the off-diagonal elements vanish.

Taken together, we have shown that AT is asymptotically diagonal:

AT →
d

[
λ2 ·

∫ 1

0
[Wµ(r)]2 dr 0

0 γ0

]
,
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so

(AT )−1 →
d

[(
λ2 ·

∫ 1

0
[Wµ(r)]2 dr

)−1 0
0 γ−1

0

]
.

Now turn to cT .

• 1st element of cT : Recall that yµt−1 ≡ yt−1 − 1
T

∑T
t=1 yt−1. Combine this with the BN

decomposition yt−1 = ψ(1)wt−1 + ηt−1 + (y0 − η0) with wt−1 ≡ ε1 + · · ·+ εt−1 to obtain

1
T

T∑
t=1

yµt−1 εt = ψ(1)
1
T

T∑
t=1

wµt−1 εt +
1
T

T∑
t=1

ηµt−1 εt,

where wµt−1 ≡ wt−1 − 1
T

∑T
t=1 wt−1. η

µ
t−1 is defined similarly. Since ηt−1 is independent of

εt, the second term on the RHS vanishes. Noting that ∆wt = εt and applying Proposition
9.2(d) to the random walk {wt}, we obtain

1
T

T∑
t=1

wµt−1 εt →
d

(σ2

2

){
[W (1)µ]2 − [W (0)µ]2 − 1

}
.

Therefore, the 1st element of cT converges in distribution to

c1 ≡ σ2 · ψ(1) · 1
2
{
[W (1)µ]2 − [W (0)µ]2 − 1

}
.

• 2nd element of cT : Using the definition (∆yt−1)(µ) ≡ ∆yt−1− 1
T

∑T
t=1 ∆yt−1, it should be

easy to show that it converges in distribution to

c2 ∼ N(0, γ0 · σ2).

Using the results derived so far, the modification to be made on (9.4.20) and (9.4.21) on p.
590 for the present case where the augmented autoregression has an intercept is

T · (ρ̂µ − 1) →
d

σ2ψ(1)
λ2

·
1
2

{
[W (1)µ]2 − [W (0)µ]2 − 1

}∫ 1

0
[Wµ(r)]2 dr

or
λ2

σ2ψ(1)
· T · (ρ̂µ − 1) →

d
DFµρ ,

√
T · (ζ̂1 − ζ1) →

d
N
(
0,
σ2

γ0

)
.

Repeating exactly the same argument that is given in the subsection entitled “Deriving Test
Statistics” on p. 590, we can claim that λ2

σ2ψ(1) is consistently estimated by 1/(1 − ζ̂). This
completes the proof of claim (9.4.34) of Proposition 9.7.

6. (a) The hint is the answer.
(b) The proof should be straightforward.

7. The one-line proof displayed in the hint is (with i replaced by k to avoid confusion)

∞∑
j=0

|αj | =
∞∑
j=0

∣∣∣∣∣∣−
∞∑

k=j+1

ψk

∣∣∣∣∣∣ ≤
∞∑
j=0

∞∑
k=j+1

|ψk| =
∞∑
k=0

k|ψk| <∞, (∗)

where {ψk} (k = 0, 1, 2, ...) is one-summable as assumed in (9.2.3a). We now justify each of
the equalities and inequalities. For this purpose, we reproduce here the facts from calculus
shown on pp. 429-430:
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(i) If {ak} is absolutely summable, then {ak} is summable (i.e., −∞ <
∑∞
k=0 ak <∞) and∣∣∣∣∣

∞∑
k=0

ak

∣∣∣∣∣ ≤
∞∑
k=0

|ak|.

(ii) Consider a sequence with two subscripts, {ajk} (j, k = 0, 1, 2, . . .). Suppose
∑∞
j=0 |ajk| <

∞ for each k and let sk ≡
∑∞
j=0 |ajk|. Suppose {sk} is summable. Then∣∣∣∣∣

∞∑
j=0

( ∞∑
k=0

ajk

)∣∣∣∣∣ <∞ and
∞∑
j=0

( ∞∑
k=0

ajk

)
=

∞∑
k=0

( ∞∑
j=0

ajk

)
<∞.

Since {ψk} is one-summable, it is absolutely summable. Let

ak =

{
ψk if k ≥ j + 1,
0 otherwise.

Then {ak} is absolutely summable because {ψk} is absolutely summable. So by (i) above, we
have ∣∣∣∣∣−

∞∑
k=j+1

ψk

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

k=j+1

ψk

∣∣∣∣∣ =
∣∣∣∣∣
∞∑
k=0

ak

∣∣∣∣∣ ≤
∞∑
k=0

|ak| =
∞∑

k=j+1

|ψk|.

Summing over j = 0, 1, 2, ..., n, we obtain

n∑
j=0

∣∣∣∣∣−
∞∑

k=j+1

ψk

∣∣∣∣∣ ≤
n∑
j=0

∞∑
k=j+1

|ψk|.

If the limit as n → ∞ of the RHS exists and is finite, then the limit of the LHS exists and
is finite (this follows from the fact that if {xn} is non-decreasing in n and if xn ≤ A < ∞,
then the limit of xn exists and is finite; set xn ≡

∑n
j=0 | −

∑∞
k=j+1 ψk|). Thus, provided that∑∞

j=0

∑∞
k=j+1 |ψk| is well-defined, we have

∞∑
j=0

∣∣∣∣∣−
∞∑

k=j+1

ψk

∣∣∣∣∣ ≤
∞∑
j=0

∞∑
k=j+1

|ψk|.

We now show that
∑∞
j=0

∑∞
k=j+1 |ψk| is well-defined. In (ii), set ajk as

ajk =

{
|ψk| if k ≥ j + 1,
0 otherwise.

Then
∑∞
j=0 |ajk| = k |ψk| <∞ for each k and sk = k |ψk|. By one-summability of {ψk}, {sk}

is summable. So the conditions in (ii) are satisfied for this choice of ajk. We therefore conclude
that

∞∑
j=0

∞∑
k=j+1

|ψk| =
∞∑
j=0

( ∞∑
k=0

ajk

)
=

∞∑
k=0

( ∞∑
j=0

ajk

)
=

∞∑
k=0

k |ψk| <∞.

This completes the proof.
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