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Solution to Chapter 5 Analytical Exercises

1. (a) Let (a′,b′)′ be the OLS estimate of (α′,β′)′. Define MD as in equation (4) of the hint.
By the Frisch-Waugh theorem, b is the OLS coefficient estimate in the regression of MDy
on MDF. The proof is complete if we can show the claim that

ỹ = MDy and F̃ = MDF,

where ỹ and F̃ are defined in (5.2.2) and (5.2.3). This is because the fixed-effects estimator
can be written as (F̃′F̃)1 F̃′ỹ (see (5.2.4)). But the above claim follows immediately if we
can show that MD = In ⊗Q, where Q ≡ IM − 1

M 1M1′M , the annihilator associated with
1M .

MD = IMn − (In ⊗ 1M ) [(In ⊗ 1M )′(In ⊗ 1M )]−1 (In ⊗ 1M )′

= IMn − (In ⊗ 1M ) [(In ⊗ 1′M1M )]−1 (In ⊗ 1′M )

= IMn − (In ⊗ 1M ) [(In ⊗M)]−1 (In ⊗ 1′M )

= IMn − (In ⊗ 1M )(In ⊗
1
M

)(In ⊗ 1′M )

= IMn − (In ⊗
1
M

1M1′M )

= (In ⊗ IM )− (In ⊗
1
M

1M1′M )

= (In ⊗ (IM −
1
M

1M1′M ))

= In ⊗Q.

(b) As indicated in the hint to (a), we have a = (D′D)−1(D′y−D′Fb). It should be straight-
forward to show that

D′D = M In, D′y =

1′My1

...
1′Myn

 , D′Fb =

1′MF1b
...

1′MFnb

 .
Therefore,

a =


1
M (1′My1 − 1′MF1b)

...
1
M (1′Myn − 1′MFnb)

 .
The desired result follows from this because b equals the fixed-effects estimator β̂FE and

1′Myi = (yi1 + · · ·+ yiM ) and 1′MFnb = 1′M

 f ′i1
...

f ′iM

b =

(
M∑
m=1

f ′im

)
b.
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(c) What needs to be shown is that (3) and conditions (i)-(iv) listed in the question together
imply Assumptions 1.1-1.4. Assumption 1.1 (linearity) is none other than (3). Assumption
1.3 is a restatement of (iv). This leaves Assumptions 1.2 (strict exogeneity) and Assumption
1.4 (spherical error term) to be verified. The following is an amplification of the answer to
1.(c) on p. 363.

E(ηi |W) = E(ηi | F) (since D is a matrix of constants)
= E(ηi | F1, . . . ,Fn)
= E(ηi | Fi) (since (ηi,Fi) is indep. of Fj for j 6= i) by (i)
= 0 (by (ii)).

Therefore, the regressors are strictly exogenous (Assumption 1.2). Also,

E(ηiη
′
i |W) = E(ηiη

′
i | F)

= E(ηiη
′
i | Fi)

= σ2
η IM (by the spherical error assumption (iii)).

For i 6= j,

E(ηiη
′
j |W) = E(ηiη

′
j | F)

= E(ηiη
′
j | F1, . . . ,Fn)

= E(ηiη
′
j | Fi,Fj) (since (ηi,Fi,ηj ,Fj) is indep. of Fk for k 6= i, j by (i))

= E[E(ηiη
′
j | Fi,Fj ,ηi) | Fi,Fj ]

= E[ηi E(η′j | Fi,Fj ,ηi) | Fi,Fj ]
= E[ηi E(η′j | Fj) | Fi,Fj ] (since (ηj ,Fj) is independent of (ηi,Fi) by (i))

= 0 (since E(η′j | Fj) by (ii)).

So E(ηη′ |W) = σ2
η IMn (Assumption 1.4).

Since the assumptions of the classical regression model are satisfied, Propositions 1.1
holds for the OLS estimator (a,b). The estimator is unbiased and the Gauss-Markov
theorem holds.

As shown in Analytical Exercise 4.(f) in Chapter 1, the residual vector from the original
regression (3) (which is to regress y on D and F) is numerically the same as the residual
vector from the regression of ỹ (= MDy) on F̃ (= MDF)). So the two SSR’s are the same.

2. (a) It is evident that C′1M = 0 if C is what is referred to in the question as the matrix of
first differences. Next, to see that C′1M = 0 if C is an M × (M − 1) matrix created by
dropping one column from Q, first note that by construction of Q, we have:

Q
(M×M)

1M = 0
(M×1)

,

which is a set of M equations. Drop one row from Q and call it C′ and drop the corre-
sponding element from the 0 vector on the RHS. Then

C′
((M−1)×M)

1M = 0
((M−1)×1)

.

(b) By multiplying both sides of (5.1.1′′) on p. 329 by C′, we eliminate 1M ·biγ and 1M ·αi.
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(c) Below we verify the five conditions.

• The random sample condition is immediate from (5.1.2).
• Regarding the orthogonality conditions, as mentioned in the hint, (5.1.8b) can be

written as E(ηi ⊗ xi) = 0. This implies the orthogonality conditions because

E(η̂i ⊗ xi) = E[(C′ ⊗ IK)(ηi ⊗ xi)] = (C′ ⊗ IK) E(ηi ⊗ xi).

• As shown on pp. 363-364, the identification condition to be verified is equivalent to
(5.1.15) (that E(QFi ⊗ xi) be of full column rank).
• Since εi = 1M · αi + ηi, we have η̂i ≡ C′ηi = C′εi. So η̂iη̂

′
i = C′εiε′iC and

E(η̂iη̂
′
i | xi) = E(C′εiε′iC | xi) = C′ E(εiε′i | xi)C = C′ΣC.

(The last equality is by (5.1.5).)
• By the definition of ĝi, we have: ĝiĝ′i = η̂iη̂

′
i ⊗ xix′i. But as just shown above,

η̂iη̂
′
i = C′εiε′iC. So

ĝiĝ′i = C′εiε′iC⊗ xix′i = (C′ ⊗ IK)(εiε′i ⊗ xix′i)(C⊗ IK).

Thus

E(ĝiĝ′i) = (C′ ⊗ IK) E[(εiε′i ⊗ xix′i)](C⊗ IK)
= (C′ ⊗ IK) E(gig′i)(C⊗ IK) (since gi ≡ εi ⊗ xi).

Since E(gig′i) is non-singular by (5.1.6) and since C is of full column rank, E(ĝiĝ′i) is
non-singular.

(d) Since F̂i ≡ C′Fi, we can rewrite Sxz and sxy as

Sxz = (C′ ⊗ IK)
( 1
n

n∑
i=1

Fi ⊗ xi
)
, sxy = (C′ ⊗ IK)

( 1
n

n∑
i=1

yi ⊗ xi
)
.

So

S′xzŴSxz =
( 1
n

n∑
i=1

F′i ⊗ x′i
)

(C⊗ IK)

[
(C′C)−1 ⊗

( 1
n

n∑
i=1

xix′i
)−1

]
(C′ ⊗ IK)

( 1
n

n∑
i=1

Fi ⊗ xi
)

=
( 1
n

n∑
i=1

F′i ⊗ x′i
)[

C(C′C)−1C′ ⊗
( 1
n

n∑
i=1

xix′i
)−1

]( 1
n

n∑
i=1

Fi ⊗ xi
)

=
( 1
n

n∑
i=1

F′i ⊗ x′i
)[

Q⊗
( 1
n

n∑
i=1

xix′i
)−1

]( 1
n

n∑
i=1

Fi ⊗ xi
)

(since C(C′C)−1C′ = Q, as mentioned in the hint).

Similarly,

S′xzŴsxy =
( 1
n

n∑
i=1

F′i ⊗ x′i
)[

Q⊗
( 1
n

n∑
i=1

xix′i
)−1

]( 1
n

n∑
i=1

yi ⊗ xi
)
.
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Noting that f ′im is the m-th row of Fi and writing out the Kronecker products in full, we
obtain

S′xzŴSxz =
M∑
m=1

M∑
h=1

qmh

{( 1
n

n∑
i=1

fimx′i
)( 1

n

n∑
i=1

xix′i
)−1( 1

n

n∑
i=1

xif ′ih
)}
,

S′xzŴsxy =
M∑
m=1

M∑
h=1

qmh

{( 1
n

n∑
i=1

fimx′i
)( 1

n

n∑
i=1

xix′i
)−1( 1

n

n∑
i=1

xi · yih
)}
,

where qmh is the (m,h) element of Q. (This is just (4.6.6) with xim = xi, zim = fim,

Ŵ = Q⊗
(

1
n

∑n
i=1 xix′i

)−1

.) Since xi includes all the elements of Fi, as noted in the hint,
xi “dissappears”. So

S′xzŴSxz =
M∑
m=1

M∑
h=1

qmh

( 1
n

n∑
i=1

fimf ′ih
)

=
1
n

n∑
i=1

( M∑
m=1

M∑
h=1

qmhfimf ′ih
)
,

S′xzŴsxy =
M∑
m=1

M∑
h=1

qmh
1
n

n∑
i=1

fim · yih =
1
n

n∑
i=1

( M∑
m=1

M∑
h=1

qmhfim · yih
)
.

Using the “beautifying” formula (4.6.16b), this expression can be simplified as

S′xzŴSxz =
1
n

n∑
i=1

F′iQFi,

S′xzŴsxy =
1
n

n∑
i=1

F′iQyi.

So
(
S′xzŴSxz

)−1

S′xzŴsxy is the fixed-effects estimator.

(e) The previous part shows that the fixed-effects estimator is not efficient because the Ŵ
in (10) does not satisfy the efficiency condition that plim Ŵ = S−1. Under conditional
homoskedasticity, S = E(η̂iη̂

′
i) ⊗ E(xix′i). Thus, with Ψ̂ being a consistent estimator of

E(η̂iη̂
′
i), the efficient GMM estimator is given by setting

Ŵ = Ψ̂
−1
⊗
( 1
n

n∑
i=1

xix′i
)−1

.

This is none other than the random-effects estimator applied to the system of M −1 equa-
tions (9). By setting Zi = F̂i, Σ̂ = Ψ̂, yi = ŷi in (4.6.8′) and (4.6.9′) on p. 293, we
obtain (12) and (13) in the question. It is shown on pp. 292-293 that these “beautified”
formulas are numerically equivalent versions of (4.6.8) and (4.6.9). By Proposition 4.7, the
random-effects estimator (4.6.8) is consistent and asymptotically normal and the asymp-
totic variance is given by (4.6.9). As noted on p. 324, it should be routine to show that
those conditions verified in (c) above are sufficient for the hypothesis of Proposition 4.7.
In particular, the Σxz referred to in Assumption 4.4′ can be written as E(F̂i⊗xi). In (c),
we’ve verified that this matrix is of full column rank.

(f) Proposition 4.1, which is about the estimation of error cross moments for the multiple-
equation model of Section 4.1, can easily be adapted to the common-coefficient model of
Section 4.6. Besides linearity, the required assumptions are (i) that the coefficient estimate
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(here β̂FE) used for calculating the residual vector be consistent and (ii) that the cross
moment between the vector of regressors from one equation (a row from F̂i) and those from
another (another row from F̂i) exist and be finite. As seen in (d), the fixed-effects estimator
β̂FE is a GMM estimator. So it is consistent. As noted in (c), E(xix′i) is non-singular.
Since xi contains all the elements of Fi, the cross moment assumption is satisfied.

(g) As noted in (e), the assumptions of Proposition 4.7 holds for the present model in question.
It has been verified in (f) that Ψ̂ defined in (14) is consistent. Therefore, Proposition 4.7(c)
holds for the present model.

(h) Since η̂i ≡ C′ηi, we have E(η̂iη̂
′
i) = E(C′ηiη′iC) = σ2

ηC
′C (the last equality is by

(15)). By setting Ψ̂ = σ̂2
ηC
′C in the expression for Ŵ in the answer to (e) (thus setting

Ŵ = σ̂2
ηC
′C ⊗

(
1
n

∑n
i=1 xix′i

)−1

), the estimator can be written as a GMM estimator

(S′xzŴSxz)−1S′xzŴsxy. Clearly, it is numerically equal to the GMM estimator with

Ŵ = C′C⊗
(

1
n

∑n
i=1 xix′i

)−1

, which, as was verified in (d), is the fixed-effects estimator.

(i) Evidently, replacing C by B ≡ CA in (11) does not change Q. So the fixed-effects
estimator is invariant to the choice of C. To see that the numerical values of (12) and (13)
are invariant to the choice of C, let F̌i ≡ B′Fi and y̌i ≡ B′yi. That is, the original M
equations (5.1.1′′) are transformed into M − 1 equations by B = CA, not by C. Then
F̌i = A′F̂i and y̌i = A′ŷi. If Ψ̌ is the estimated error cross moment matrix when (14) is
used with y̌i replacing ŷi and F̌i replacing F̂i, then we have: Ψ̌ = A′Ψ̂A. So

F̌′iΨ̌
−1

F̌i = F̂′iA(A′Ψ̂A)−1A′F̂i = F̂′iAA−1Ψ̂
−1

(A′)−1A′F̂i = F̂′iΨ̂
−1

F̂i.

Similarly, F̌′iΨ̌
−1

y̌i = F̂′iΨ̂
−1

ŷi.

3. From (5.1.1′′), vi = C′(yi − Fiβ) = C′ηi. So E(viv′i) = E(C′ηiη′iC) = C′ E(ηiη′i)C =
σ2
ηC
′C. By the hint,

plim
SSR
n

= trace
[
(C′C)−1 σ2

ηC
′C
]

= σ2
η trace[IM−1] = σ2

η · (M − 1).

4. (a) bi is absent from the system of M equations (or bi is a zero vector).

yi =

 yi1...
yiM

 , Fi =

 yi0
...

yi,M−1

 .
(b) Recursive substitution (starting with a substitution of the first equation of the system into

the second) yields the equation in the hint. Multiply both sides of the equation by ηih and
take expectations to obtain

E(yim · ηih) = E(ηim · ηih) + ρE(ηi,m−1 · ηih) + · · ·+ ρm−1 E(ηi1 · ηih)

+
1− ρm

1− ρ
E(αi · ηih) + ρm E(yi0 · ηih)

= E(ηim · ηih) + ρE(ηi,m−1 · ηih) + · · ·+ ρm−1 E(ηi1 · ηih)
(since E(αi · ηih) = 0 and E(yi0 · ηih) = 0)

=

{
ρm−h σ2

η if h = 1, 2, . . . ,m,
0 if h = m+ 1,m+ 2, . . . .
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(c) That E(yim · ηih) = ρm−hσ2
η for m ≥ h is shown in (b). Noting that Fi here is a vector,

not a matrix, we have:

E(F′iQηi) = E[trace(F′iQηi)]

= E[trace(ηiF
′
iQ)]

= trace[E(ηiF
′
i)Q]

= trace[E(ηiF
′
i)(IM −

1
M

11′)]

= trace[E(ηiF
′
i)]−

1
M

trace[E(ηiF
′
i)11′]

= trace[E(ηiF
′
i)]−

1
M

1′ E(ηiF
′
i)1.

By the results shown in (b), E(ηiF′i) can be written as

E(ηiF
′
i) = σ2

η



0 1 ρ ρ2 · · · ρM−2

0 0 1 ρ · · · ρM−3

...
...

. . . . . . · · ·
...

0 · · · · · · 0 1 ρ
0 · · · · · · · · · 0 1
0 · · · · · · · · · · · · 0


.

So, in the above expression for E(F′iQηi), trace[E(ηiF′i)] = 0 and

1′ E(ηiF
′
i)1 = sum of the elements of E(ηiF

′
i)

= sum of the first row + · · ·+ sum of the last row

= σ2
η

[
1− ρM−1

1− ρ
+

1− ρM−2

1− ρ
+ · · ·+ 1− ρ

1− ρ

]

= σ2
η

M − 1−M ρ+ ρM

(1− ρ)2
.

(d) (5.2.6) is violated because E(fim · ηih) = E(yi,m−1 · ηih) 6= 0 for h ≤ m− 1.

5. (a) The hint shows that

E(F̃′iF̃i) = E(QFi ⊗ xi)′
(
IM ⊗

[
E(xix′i)

]−1)E(QFi ⊗ xi).

By (5.1.15), E(QFi ⊗ xi) is of full column rank. So the matrix product above is non-
singular.

(b) By (5.1.5) and (5.1.6′), E(εiε′i) is non-singular.

(c) By the same sort of argument used in (a) and (b) and noting that F̂i ≡ C′Fi, we have

E(F̂′i Ψ
−1 F̂i) = E(C′Fi ⊗ xi)′

(
Ψ−1 ⊗

[
E(xix′i)

]−1)E(C′Fi ⊗ xi).

We’ve verified in 2(c) that E(C′Fi ⊗ xi) is of full column rank.
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6. This question presumes that

xi =


fi1
...

fiM
bi

 and fim = A′mxi.

(a) The m-th row of Fi is f ′im and f ′im = x′iAm.

(b) The rank condition (5.1.15) is that E(F̃i ⊗ xi) be of full column rank (where F̃i ≡ QFi).
By the hint, E(F̃i ⊗ xi) = [IM ⊗ E(xix′i)](Q ⊗ IK)A. Since E(xix′i) is non-singular,
IM ⊗E(xix′i) is non-singular. Multiplication by a non-singular matrix does not alter rank.

7. The hint is the answer.
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