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Solution to Chapter 1 Analytical Exercises

1. (Reproducing the answer on p. 84 of the book)

(y−Xβ̃)′(y −Xβ̃) = [(y −Xb) + X(b− β̃)]′[(y −Xb) + X(b− β̃)]
(by the add-and-subtract strategy)

= [(y −Xb)′ + (b− β̃)′X′][(y −Xb) + X(b− β̃)]

= (y −Xb)′(y −Xb) + (b− β̃)′X′(y −Xb)

+ (y −Xb)′X(b− β̃) + (b− β̃)′X′X(b− β̃)

= (y −Xb)′(y −Xb) + 2(b− β̃)′X′(y −Xb) + (b− β̃)′X′X(b− β̃)

(since (b− β̃)′X′(y −Xb) = (y −Xb)′X(b− β̃))

= (y −Xb)′(y −Xb) + (b− β̃)′X′X(b− β̃)
(since X′(y −Xb) = 0 by the normal equations)

≥ (y −Xb)′(y −Xb)

(since (b− β̃)′X′X(b− β̃) = z′z =
n∑
i=1

z2
i ≥ 0 where z ≡ X(b− β̃)).

2. (a), (b). If X is an n×K matrix of full column rank, then X′X is symmetric and invertible.
It is very straightforward to show (and indeed you’ve been asked to show in the text) that
MX ≡ In−X(X′X)−1X′ is symmetric and idempotent and that MXX = 0. In this question,
set X = 1 (vector of ones).

(c)

M1y = [In − 1(1′1)−11′]y

= y − 1
n

11′y (since 1′1 = n)

= y − 1
n

1
n∑
i=1

yi = y − 1· y

(d) Replace “y” by “X” in (c).

3. Special case of the solution to the next exercise.

4. From the normal equations (1.2.3) of the text, we obtain

(a) [
X′1
X′2

]
[X1

... X2]
[

b1

b2

]
=
[

X′1
X′2

]
y.

Using the rules of multiplication of partitioned matrices, it is straightforward to derive (∗)
and (∗∗) from the above.
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(b) By premultiplying both sides of (∗) in the question by X1(X′1X1)−1, we obtain

X1(X′1X1)−1X′1X1b1 = −X1(X′1X1)−1X′1X2b2 + X1(X′1X1)−1X′1y

⇔ X1b1 = −P1X2b2 + P1y

Substitution of this into (∗∗) yields

X′2(−P1X2b2 + P1y) + X′2X2b2 = X′2y

⇔ X′2(I−P1)X2b2 = X′2(I−P1)y
⇔ X′2M1X2b2 = X′2M1y

⇔ X′2M
′
1M1X2b2 = X′2M

′
1M1y (since M1 is symmetric & idempotent)

⇔ X̃′2X̃2b2 = X̃′2ỹ.

Therefore,

b2 = (X̃′2X̃2)−1X̃′2ỹ

(The matrix X̃′2X̃2 is invertible because X̃2 is of full column rank. To see that X̃2 is of full
column rank, suppose not. Then there exists a non-zero vector c such that X̃2c = 0. But

X̃2c = X2c−X1d where d ≡ (X′1X1)−1X′1X2c. That is, Xπ = 0 for π ≡
[
−d
c

]
. This is

a contradiction because X = [X1

... X2] is of full column rank and π 6= 0.)
(c) By premultiplying both sides of y = X1b1 + X2b2 + e by M1, we obtain

M1y = M1X1b1 + M1X2b2 + M1e.

Since M1X1 = 0 and ỹ ≡M1y, the above equation can be rewritten as

ỹ = M1X2b2 + M1e

= X̃2b2 + M1e.

M1e = e because

M1e = (I−P1)e
= e−P1e

= e−X1(X′1X1)−1X′1e

= e (since X′1e = 0 by normal equations).

(d) From (b), we have

b2 = (X̃′2X̃2)−1X̃′2ỹ

= (X̃′2X̃2)−1X′2M
′
1M1y

= (X̃′2X̃2)−1X̃′2y.

Therefore, b2 is the OLS coefficient estimator for the regression y on X̃2. The residual
vector from the regression is

y − X̃2b2 = (y − ỹ) + (ỹ − X̃2b2)

= (y −M1y) + (ỹ − X̃2b2)
= (y −M1y) + e (by (c))
= P1y + e.
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This does not equal e because P1y is not necessarily zero. The SSR from the regression
of y on X̃2 can be written as

(y − X̃2b2)′(y − X̃2b2) = (P1y + e)′(P1y + e)

= (P1y)′(P1y) + e′e (since P1e = X1(X′1X1)−1X′1e = 0).

This does not equal e′e if P1y is not zero.

(e) From (c), ỹ = X̃2b2 + e. So

ỹ′ỹ = (X̃2b2 + e)′(X̃2b2 + e)

= b′2X̃
′
2X̃2b2 + e′e (since X̃2e = 0).

Since b2 = (X̃′2X̃2)−1X̃′2y, we have b′2X̃
′
2X̃2b2 = ỹ′X2(X′2M1X2)−1X2ỹ.

(f) (i) Let b̂1 be the OLS coefficient estimator for the regression of ỹ on X1. Then

b̂1 = (X′1X1)−1X′1ỹ

= (X′1X1)−1X′1M1y

= (X′1X1)−1(M1X1)′y
= 0 (since M1X1 = 0).

So SSR1 = (ỹ −X1b̂1)′(ỹ −X1b̂1) = ỹ′ỹ.
(ii) Since the residual vector from the regression of ỹ on X̃2 equals e by (c), SSR2 = e′e.

(iii) From the Frisch-Waugh Theorem, the residuals from the regression of ỹ on X1 and
X2 equal those from the regression of M1ỹ (= ỹ) on M1X2 (= X̃2). So SSR3 = e′e.

5. (a) The hint is as good as the answer.

(b) Let ε̂ ≡ y−Xβ̂, the residuals from the restricted regression. By using the add-and-subtract
strategy, we obtain

ε̂ ≡ y −Xβ̂ = (y −Xb) + X(b− β̂).

So

SSRR = [(y −Xb) + X(b− β̂)]′[(y −Xb) + X(b− β̂)]

= (y −Xb)′(y −Xb) + (b− β̂)′X′X(b− β̂) (since X′(y −Xb) = 0).

But SSRU = (y −Xb)′(y −Xb), so

SSRR − SSRU = (b− β̂)′X′X(b− β̂)

= (Rb− r)′[R(X′X)−1R′]−1(Rb− r) (using the expresion for β̂ from (a))

= λ′R(X′X)−1R′λ (using the expresion for λ from (a))

= ε̂′X(X′X)−1X′ε̂ (by the first order conditions that X′(y −Xβ̂) = R′λ)

= ε̂′Pε̂.

(c) The F -ratio is defined as

F ≡ (Rb− r)′[R(X′X)−1R′]−1(Rb− r)/r
s2

(where r = #r) (1.4.9)
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Since (Rb− r)′[R(X′X)−1R′]−1(Rb− r) = SSRR − SSRU as shown above, the F -ratio
can be rewritten as

F =
(SSRR − SSRU )/r

s2

=
(SSRR − SSRU )/r

e′e/(n−K)

=
(SSRR − SSRU )/r
SSRU/(n−K)

Therefore, (1.4.9)=(1.4.11).

6. (a) Unrestricted model: y = Xβ + ε, where

y
(N×1)

=

 y1

...
yn

 , X
(N×K)

=

 1 x12 . . . x1K

...
...

. . .
...

1 xn2 . . . xnK

 , β
(K×1)

=

 β1

...
βn

 .
Restricted model: y = Xβ + ε, Rβ = r, where

R
((K−1)×K)

=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

0 0 1

 , r
((K−1)×1)

=

 0
...
0

 .
Obviously, the restricted OLS estimator of β is

β̂
(K×1)

=


y
0
...
0

 . So Xβ̂ =


y
y
...
y

 = 1· y.

(You can use the formula for the unrestricted OLS derived in the previous exercise, β̂ =
b − (X′X)−1R′[R(X′X)−1R′]−1(Rb − r), to verify this.) If SSRU and SSRR are the
minimized sums of squared residuals from the unrestricted and restricted models, they are
calculated as

SSRR = (y −Xβ̂)′(y −Xβ̂) =
n∑
i=1

(yi − y)2

SSRU = (y −Xb)′(y −Xb) = e′e =
n∑
i=1

e2
i

Therefore,

SSRR − SSRU =
n∑
i=1

(yi − y)2 −
n∑
i=1

e2
i . (A)
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On the other hand,

(b− β̂)′(X′X)(b− β̂) = (Xb−Xβ̂)′(Xb−Xβ̂)

=
n∑
i=1

(ŷi − y)2.

Since SSRR − SSRU = (b− β̂)′(X′X)(b− β̂) (as shown in Exercise 5(b)),

n∑
i=1

(yi − y)2 −
n∑
i=1

e2
i =

n∑
i=1

(ŷi − y)2. (B)

(b)

F =
(SSRR − SSRU )/(K − 1)∑n

i=1 e
2
i /(n−K)

(by Exercise 5(c))

=
(
∑n
i=1(yi − y)2 −

∑n
i=1 e

2
i )/(K − 1)∑n

i=1 e
2
i /(n−K)

(by equation (A) above)

=
∑n
i=1(ŷi − y)2/(K − 1)∑n

i=1 e
2
i /(n−K)

(by equation (B) above)

=

Pn
i=1(byi−y)2/(K−1)Pn

i=1(yi−y)2
Pn
i=1 e

2
i/(n−K)Pn

i=1(yi−y)2

(by dividing both numerator & denominator by
n∑
i=1

(yi − y)2)

=
R2/(K − 1)

(1−R2)/(n−K)
(by the definition or R2).

7. (Reproducing the answer on pp. 84-85 of the book)

(a) β̂GLS − β = Aε where A ≡ (X′V−1X)−1X′V−1 and b − β̂GLS = Bε where B ≡
(X′X)−1X′ − (X′V−1X)−1X′V−1. So

Cov(β̂GLS − β,b− β̂GLS)
= Cov(Aε,Bε)
= A Var(ε)B′

= σ2AVB′.

It is straightforward to show that AVB′ = 0.

(b) For the choice of H indicated in the hint,

Var(β̂)−Var(β̂GLS) = −CV−1
q C′.

If C 6= 0, then there exists a nonzero vector z such that C′z ≡ v 6= 0. For such z,

z′[Var(β̂)−Var(β̂GLS)]z = −v′V−1
q v < 0 (since Vq is positive definite),

which is a contradiction because β̂GLS is efficient.
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